miR-22 promotes apoptosis of osteosarcoma cells via inducing cell cycle arrest

نویسندگان

  • Pengzhou Gai
  • Hongliang Sun
  • Guangda Wang
  • Qiang Xu
  • Xiaojun Qi
  • Zuofu Zhang
  • Lei Jiang
چکیده

To study the effects of miR-22 on the proliferation and the apoptosis of osteosarcoma MG-63 cell line and to explore the potential molecular mechanism that miR-22 regulates this biological process. Quantitive real-time polymerase chain reaction (RT-qPCR) was performed to explore the miRNA level of miR-22. The MG-63 cell line was infected with miR-22 mimics for establishment of miR-22 overexpression. Non-infected cells were in blank group and cells infected with empty vector were served as negative control (NC group). MTT assay was conducted to measure cell viability. The cell cycle and apoptosis were explored using flow cytometry and the apoptosis-related markers were detected by western blotting. RT-qPCR results revealed that the miR-22 miRNA level in the MG-63 cells was significantly lower than that in osteoblasts (P<0.05). MTT assay showed that the MG-63 cells infected with miR-22 mimics exhibited markedly decreased proliferation ability compared with blank and empty vector (NC) groups. Next, we found that overexpression of miR-22 remarkably increased the apoptosis of the MG-63 cells, evidenced from the flow cytometry results and elevated Bax and reduced Bcl-2. Furthermore, results revealed that percentage of the cells at G0/G1 phase in miR-22 mimic group (66.75±3.67%) was significantly higher than blank (52.9±2.58%) and NC (50.5±2.45%) groups. miR-22 attenuated the proliferation and induced the apoptosis of the MG-63 cells via promoting G0/G1 cell cycle arrest. Thus, miR-22 may have the potential to be a novel therapeutic in treatment of osteosarcoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-34a promotes cell cycle arrest and apoptosis and suppresses cell adhesion by targeting DUSP1 in osteosarcoma.

MicroRNAs are often deregulated in most cancer types and have important functions in carcinogenesis and cancer progression. Here, we studied the function of microRNA-34 (miR-34a) in osteosarcoma MG63 and U-2OS cells by expressed with pre-miR-34a, anti-miR-34a and corresponding negative controls, respectively. Cells proliferation, cell cycle and apoptosis was measured by MTT and flow cytometry a...

متن کامل

miR-422a inhibits osteosarcoma proliferation by targeting BCL2L2 and KRAS

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. However, the underlying mechanism of osteosarcoma carcinogenesis and progression remains unknown. In the present study, we evaluated the expression profile of miRNAs in osteosarcoma tissues and the adjacent normal tissues. We found that the expression of miR-422a was down-regulated in osteosarcoma tissues ...

متن کامل

Long non-coding RNA PVT1 promotes osteosarcoma development by acting as a molecular sponge to regulate miR-195

A growing body of evidence has indicated that long non-coding RNAs (lncRNAs) serve as competing endogenous RNAs (ceRNAs) during oncogenesis. In this study, the qRT-PCR results indicated that the lncRNA PVT1 is overexpressed in osteosarcoma and decreased the survival rate of osteosarcoma patients. MTT and clonal colony formation assays were used to detect the effect of PVT1 on proliferation, and...

متن کامل

Overexpression of miR-126 sensitizes osteosarcoma cells to apoptosis induced by epigallocatechin-3-gallate

BACKGROUND miR-126 plays an important role in the proliferation, invasion, migration, and chemotherapeutics resistance in cancer. Epigallocatechin-3-gallate (EGCG), as the major polyphenolic constituent present in green tea, is a promising anticancer agent. However, the role of miR-126 in EGCG anticancer remains unclear. Here, we investigated the effects of miR-126 and EGCG on cell viability, a...

متن کامل

miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma.

Osteosarcoma, the most common primary tumor of the bones, causes many deaths due to its rapid proliferation and drug resistance. Recent studies have shown that cyclin D1 plays a key regulatory role during cell proliferation, and non-coding microRNAs (miRNAs) act as crucial modulators of cyclin D1 (CCND1). The aim of the current study was to determine the role of miRNAs in controlling CCND1 expr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017